
CHRISTENSEN ET AL . VOL. 6 ’ NO. 1 ’ 431–440 ’ 2012

www.acsnano.org

431

December 06, 2011

C 2011 American Chemical Society

Graphene Plasmon Waveguiding and
Hybridization in Individual and Paired
Nanoribbons
Johan Christensen,† Alejandro Manjavacas,† Sukosin Thongrattanasiri,† Frank H. L. Koppens,‡ and

F. Javier Garcı́a de Abajo†,§,*

†IQFR�CSIC, Serrano 119, 28006 Madrid, Spain and ‡ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona, Spain.
§Present address: Currently on sabbatical at Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, U.K.

P
lasmons, the collective oscillations of
conduction electrons, have been identi-
fied in a largevariety of systems, ranging

from metallic films1 down to nanoparticles2

and carbon molecules,3 and more recently
also in graphene.4 In an intuitive picture to
understand these excitations, the electric field
of an incident light beamcandrive a collective
springmotion of free charges (the conduction
electrons) back and forth between opposite
ends of a metal structure.2 The importance of
such motion lies in part in its ability to focus
light and enhance the electric field intensity
near the structure by several orders of magni-
tude, which allows sensing chemical changes
in the immediate vicinity of the particle,5 as
well as performing surface-enhanced Raman
scattering (SERS) down to the single molecule
level.6 Field enhancement is particularly in-
tense in metallic gaps, which can now be
reliably fabricated below 10 nm.7 New plas-
monic nanostructures with added functional-
ities are currently emerging at a tremendous
pace.8�10 In this context, plasmon hybridiza-
tion has emerged as a popular approach to
understand and predict the properties of
these excitations by relying on the methods
of quantumchemistry,11,12which allow tuning
nanometer-sizedparticles to thedesiredwave-
length region, leading to applications such
as cancer therapy.13,14

The relatively short lifetime of confined
plasmons, typically in the range of tens of
optical cycles, is a limiting factor for many
potential applications. Additionally, plas-
mons are difficult to control without produ-
cing changes in the composition or geo-
metry of the nanostructures on which they
are supported. These limitations have been
recently liftedwith the recent prediction15�18

and indirect observation4 of plasmons in
doped graphene, which are expected to live
much longer18 and can be controlled by

varying the doping level via electrostatic
gating.19

The unique electronic, mechanical, and
optical properties of graphene20�27 have
spurred tremendous interest on this atom-
ically thin material, from which applications
such as optical sensors,28 transparent elec-
trodes, and NEMs23 are rapidly emerging.
The linear dispersion relation of electronic
states in graphene, characterized by
conical conduction and valence bands
joined by just two single points at the Fermi
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ABSTRACT

Plasmons in doped graphene exhibit relatively large confinement and long lifetime compared

to noble-metal plasmons. Here, we study the propagation properties of plasmons guided

along individual and interacting graphene nanoribbons. Besides their tunability via electro-

static gating, an additional handle to control these excitations is provided by the dielectric

environment and the relative arrangement of the interacting waveguides. Plasmon interaction

and hybridization in pairs of neighboring aligned ribbons are shown to be strong enough to

produce dramatic modifications in the plasmon field profiles. We introduce a universal scaling

law that considerably simplifies the analysis an understanding of these plasmons. Our work

provides the building blocks to construct graphene plasmon circuits for future compact

plasmon devices with potential application to optical signal processing, infrared sensing, and

quantum information technology.

KEYWORDS: plasmonics . graphene plasmons . nanophotonics . waveguides .
nanoribbons
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level (the so-called Dirac points),25,29 makes it a
fantastic material for optoelectronic applica-
tions.19,24,27,28,30�32 Additionally, an excess of electrons
or holes in doped graphene can produce collec-
tive plasmon oscillations, similar to those in noble
metals.15�18 However, compared to conventional plas-
monic materials (e.g., silver and gold), graphene with
elevated carrier densities presents the following ap-
pealing properties:33

• Tunability. The optical response of doped gra-
phene strongly depends on the doping level,
or equivalently, on the Fermi energy EF relative
to the Dirac points, which can be chemically or
electrostatically tuned, thus resulting in dramatic
changes in the plasmon spectrum. This actually
provides a tool for electrically switching the opti-
cal properties of the carbon sheet.19 Fermi en-
ergies of the order of an electronvolt are currently
attainable,34,35 involving charge-carrier densities
n = EF

2/(πp2vF
2) ≈ 1014 cm�2, where vF ≈ c/300 is

the Fermi velocity.
• Extreme confinement. Doped-graphene plasmons
have a wavelength λp that is ca. 1�3 orders of
magnitude smaller than the light wavelength λ0
(more precisely, λp/λ0 ≈ 2REF/(pω), where R ≈ 1/
137 is the fine structure constant andω is the light
frequency). This is because these plasmons pro-
pagate at a speed comparable to vF , c. As a
result, graphene plasmons can be confined down
to volumes that are several orders of magnitude
smaller than plasmons in noble metals.

• Crystalinity. The strength of the carbon chemical
bondproduces regular graphene structures that are
defect-free over several plasmon wavelengths.36

This is in contrast to metal plasmonics, in which
fabrication imperfections constitute a bottleneck in
the performance of nanometallic structures.

• Low losses. The relatively large conductivity of
graphene translates into long optical relaxation
times reaching values of τ≈ 10�13 s, compared to
∼10�14 s in gold, thus providing a plausible
solution to the long-standing problem of dissipa-
tion in plasmonics. The lifetime of graphene
plasmons can reach hundreds of optical cycles
and, at higher frequencies and carrier densities, it
is only limited by the intrinsic relaxation time of
thismaterial. For energies above 0.2 eV, graphene
optical phonons are expected to dominate plas-
monic losses, but careful analysis37 reveals that
the effective scattering time can still be larger
than for noble metals. We remark that low losses
are only expected for sufficiently high carrier
densities, such that the Fermi energy is larger
than the plasmon energy.33

Because of these unique properties, graphene has
been recently proposed as a platform for plasmon

waveguiding at infrared frequencies, in particular by
patterning a back gate to draw plasmon circuits and
optical elements in the doped regions of an extended
graphene sheet placed above the patterned gate.38 A
surface cloak based on graphene has been recently
proposed as well.39 Plasmons in suitably nanostruc-
tured graphene have been shown to produce strong
cavity-QED effects33 and total infrared light absorp-
tion.40 Even unpatterned graphene can lead to a
tremendous reduction in the lifetime of neighboring
excited atoms by up to 5�6 orders of magnitide due to
plasmon coupling.33,41�43 From the experimental side,
graphene plasmons are being intensely investigated,
and even metamaterials integrating graphene have
been recently produced.4,44 Clear evidence of the
effect of graphene plasmons in the THz transmission
properties ofmicroribbons has been recently obtained,
conclusively demonstrating the ability to control the
optical properties of this material by electrostatic
doping.4

In this work, we show that doped graphene ribbons
can propagate plasmons along large distances com-
pared to the plasmon wavelength. Waveguides are a
central element for plasmonic applications, and in
particular, graphene waveguides inherit all of the
advantages noted above and present unique features,
such as a large concentration of the electromagnetic
field near ribbon edges and strong interaction that can
be useful to transfer information between neighboring
waveguides. In combination with other appealing
graphene properties, such as its high electronmobility,
this opens new avenues for optoelectronic applica-
tions, sensors, and quantum information transfer. We
supplement this study by formulating a powerful uni-
versal scaling law that allows one to apply our results to
any geometrically scaled structure without requiring
further extensive numerical computations.
It should be noted that our study is based upon a

classical electromagnetic description in which gra-
phene is represented by a local conductivity. We have
shown that this is accurate for ribbons wider than
25 nm, such as those considered here, compared to
an ab initio theoretical description of the optical re-
sponse of these structures.45

RESULTS AND DISCUSSION

Individual Ribbons. We start by analyzing individual
ribbons in Figure 1. The translational symmetry of the
system permits classifying all electromagnetic solu-
tions (including propagating plasmons) in terms of
their frequency ω and parallel wave vector k ), so that
the corresponding fields and induced currents depend
on time t and distance z along the ribbon as exp
(ik )z � iωt). In the dispersion diagram of Figure 1a,
calculated for a ribbon width W = 100 nm, the light
line is nearly indistinguishable from the vertical axis
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(cf. the horizontal scale of the figure and the light wave
vector k )= 0.0025 nm�1 at pω= 0.5 eV), so the plasmon
bands under consideration are essentially electrostatic
in nature, which is actually expected from the small
ribbon width compared to the photon wavelength
(e.g., even at 0.5 eV, the photon wavelength is 25 times
larger than the ribbon width in Figure 1a). The quantity
actually plotted in Figure 1a is the local density of
optical states (LDOS, see Materials and Methods),
which show prominent maxima at points (k ),ω) corre-
sponding to the presence of graphene plasmons. The
lowest-energy mode A displays a characteristic wave-
length-cutoff-free profile typical of any linear trapping
structure (e.g., nanowires, dielectric fibers, etc.), and
asymptotically approaching the light line in the k )Wf

0 limit. The electric near-field along the ribbon direc-
tion (Figure 1b) demonstrates that this mode is a 2D

monopole, characterized by the absence of any nodes
in the induced density across the ribbon width (notice
that the field lines of the field components in the plane
of the figure, indicated by arrowed lines in Figure 1b,
are nearly perpendicular to the ribbon close to it,
where the normal field at the ribbon is proportional
to the induced surface charge density, which indeed
does not change sign in mode A). This so-called edge
mode46 has maxima of intensity near the ribbon
boundaries. In contrast to mode A, higher-energy
modes (e.g., B�D in Figure 1a) display a characteristic
optical dispersion, with a threshold energy toward
k ) = 0 at which their group velocity vanishes. These
modes have been extensively studied for k ) = 0,33

where they have been shown to couple to propagating
light as dipoles and higher ordermultipoles depending
on the number of nodes because their wave vector lies

Figure 1. Guided plasmons in individual doped graphene ribbons. (a) Dispersion diagram of a self-standing ribbon of width
W= 100 nmand Fermi energy EF = 0.5 eV. (b) Real part of the electric field amplitude (density plots) along the ribbon direction
corresponding tomodes labeled A�D in panel (a) for a parallel wave vector k ) = 0.035 nm�1 and energies 0.19, 0.22, 0.29, and
0.34 eV, respectively. The field lines for the electric field components in the plane of the figure are shown by arrows. (c)
Universal electrostatic scaling parameter η = χ Im{σ(ωp)}/(ωpW), where ωp refers to the plasmon peak frequencies, as a
function of k )W for ribbons with different values of W and EF in various dielectric environments: free-standing (χ = 1),
embedded in silica (χ = 1/εs with εs = 2.1), and supported on a substrate�air interface (χ = 2/(εsþ 1)). (d) Propagation distance
in units of theplasmonwavelength formodesA�Dasobtained from the electrostatic scaling law (solid symbols) and from the
width of the plasmon features in panel (a) (open symbols).
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inside the light cone, although their main source of
attenuation is absorption losses in the carbon sheet (e.g.,
coupling to electron�hole pairs and phonons), rather
than radiation.33 Actually, all modes, including A, have
a similar fwhm, approximately equal to pτ�1 (see
below).

The near-field plots of Figure 1b show that modes
A�D are 2D monopoles, dipoles, quadrupoles, and
octopoles, respectively. Strong field concentration
takes place at the ribbon edges in all cases. These
characteristics are maintained all along the dispersion
curves.

Electrostatic Scaling Law. The electrostatic nature of
the modes suggests that we can formulate a simple
scaling law allowing us to obtain universal plasmon
dispersion curves, with independence of the ribbon
width, the actual model used for the conductivity σ,
and the physical parameters of the graphene (i.e., EF, τ,
and the temperature). A scaling law has already been
hinted within the Drudemodel,4 but we here present a
general formulation that is applicable to any form of
σ and extends not only to the plasmon frequencies but
also to their lifetimes. Unlike electrodynamics, in which
the wavelength defines an absolute length scale, the
electrostatic limit is scale-invariant. The plasmon reso-
nances of the system are thus solely determined by
the geometry and the dielectric function. Examining
the dielectric function used in our simulations of
graphene ribbons (see Materials and Methods), and
noticing that our results have reasonably converged
for the small thickness under consideration (see Sup-
porting Information, SI), we conclude that the plasmon
energies must occur at specific values of the dimen-
sionless parameter �iσ(ω)/(ωW) (we use Gaussian
units here, so σ has dimensions of velocity). Neglecting
losses, we conclude that the values of the scaling
parameter

η ¼ χ
Imfσ(ωp)g

ωpW
(1)

at the peak plasmon frequencies ωp must be indepen-
dent of W, EF, and other physical parameters, and
therefore, η is only a function of the product k )W.
(We introduce the factor χ = 1 in vacuum, and χ 6¼ 1
near dielectrics; see below). We illustrate this in
Figure 1c, which shows the scaling parameter corre-
sponding to plasmons calculated for a wide range of
values of W and EF. The scaling law is remarkably
fulfilled, thus simplifying the task of dealing with
different ribbon widths and doping levels, as the
plasmon energies can be constructed by finding the
values ofωp that follow the universal curves presented
in Figure 1c. Incidentally, we show in the SI several of
the dispersion diagrams fromwhich Figure 1c has been
extracted, corresponding to a wide range of graphene
physical parameters. The black dashed curves are

analytical fits to the data given by

η ¼ � 0:0023þ 0:25=(2:7þ k )W)þ 0:28=(0:34þ k2)W
2) mode A

η ¼ 0:0107þ 1:05=[18:5 þ (k )W � 0:307)2] mode B

η ¼ 0:00519þ 1:56=[65:7þ (k )W � 0:211)2] mode C

These expressions in combination with eq 1 provide a
comprehensive description of the guided mode en-
ergies in graphene ribbons.

It is instructive to insert theDrudemodel (seeMaterials
andMethods) in eq 1 to obtain an analytical expression
for the plasmon frequencies,

ωp ¼ e

p

ffiffiffiffiffiffiffiffiffiffi
χEF
πηW

s
(2)

Similar toplasmons inahomogeneousgraphene sheet,18

eq 2 predicts a plasmon frequency scaling with (EF)
1/2.

For fixed k )W (this implies fixed η), the frequency scales
like 1/

√
W, in agreement with previous observations

for k ) = 0.4,33 Naturally, the plasmon frequency can be
influenced by finer details in the conductivity σ beyond
the dipole model, but the universal scaling law of eq 1
can be applied for any form of the frequency-depen-
dent function σ(ω). Interestingly, guidedmodes do not
satisfy the typical thumb rule of classical waveguides in
which the first mode occurs for a width given by λp/2.
Instead, the ribbon width for which a mode can be
guided is related to the plasmon wavelength in homo-
geneous graphene through a less intuitive relation,

W ¼ λp
4π2η

(3)

where η can be directly plugged from Figure 1c as a
function of k )W for low-energy guided modes. Equation
3 is obtained by expressing eq 1 (with χ = 1 for self-
standing ribbons) in terms of the plasmonwavelength,
λp = 4π2 Im{σ(ωp)}/ωp, which is in turn derived from
the plasmon dispersion relation in homogeneous gra-
phene k )

SP = iω/[2πσ(ω)].18 Incidentally, the dispersion
relationof thewavelength-cutoff-freemode(A inFigure1)
asymptotically converges to the latter expression in
the k )W , 1 limit.

We provide two modifications of the scaling law
intended to deal with relevant configurations in which
the graphene is placed near dielectrics: (1) when the
carbon sheet is fully embedded in a homogeneous
medium of permittivity εs, the fields produced by the
charges induced in the graphene are effectively re-
duced by a factor χ = 1/εs, and thus, the above scaling
law works if we multiply the scaling parameter by this
coefficient; (2) likewise, the electrostatic field produced
by charges sitting on a planar interface of this dielectric
with air are simply reduced by a factor χ = 2/(εs þ 1),
which therefore needs to be multiplied to the scaling
parameter when describing supported graphene. The
scaling law is also shown in Figure 1c to apply to these
two additional configurations (homogeneous dielectric
and dielectric substrate).
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When losses are contemplated, the scaling para-
metermust remain real at the plasmon resonance (that
is, in contrast to electrodynamics, electrostatics can be
constructed out of real quantities because there are no
radiative losses involved). This reality condition allows

us to estimate the frequency fwhm of the modes,

which is given by the on-resonance value of�2Im{ωp}.

Actually, the frequency enters the graphene permittiv-

ity roughly via ω(ω þ iτ�1), which takes a real value

when Im{ω} = (�1/2)τ�1, for which σ becomes purely

imaginary. The frequency fwhm of the modes must

therefore be equal to τ�1, and their lifetime is thus

independent of ribbon width and parallel wave vector.
The scaling law obviously applies to any geometry by

substituting a characteristic length of the structure forW.
In particular, the computations that follow for ribbon
pairs can be applied to any other structure in which the
ratio of ribbon distance to width is kept constant.

Propagation Distance. The distance traveled by plas-
mons before they are dissipated into electron�hole
pairs and heat is essentially controlled by their lifetime.
We have shown from the electrostatic scaling law that
the lifetime is basically the same as the bulk relaxation
time of graphene τ, and therefore, the propagation
distance is simply given by vgτ, where vg is the group
velocity (i.e., the slope of the dispersion curves, vg =
dωp/dk )). Expressed in units of the plasmon wavelength
λp = 2π/k ), a plasmon ofwave vector k ) travels a distance

Lp
λp

¼ k )vgτ

2π
(4)

before it is dissipated. We show in Figure 1d propaga-
tion distances derived from this expression for modes

A�D of 1a (solid symbols), in agreement with recently
reported calculations.46 This agreement is expected
because the electrostatic limit is a good approximation
to study ribbons of small width compared to the
wavelength. Equation 4 clearly explains the observed
vanishing of Lp/λp in the limit of small k ). Interestingly,
the distance Lp reaches many plasmon wavelengths, a
behavior that is not found in thin noble-metal wave-
guides for similar small values of λp.

These results are in excellent agreement with a
direct calculation of the propagation distance obtained
from the width of the plasmon features in Figure 1a.
More precisely, the wave-vector dependence of the LDOS
shown in this figure near a plasmon resonance at fixed
frequency is simply given by a Lorentzian, ∼1/[(k ) �
Re{k )

SP})2 þ (Im{k )

SP})2], where k )

SP is the complex
plasmon wave vector, the imaginary part of which
describes 1/e;intensity attenuation along the direc-
tion of propagation with a characteristic distance

Lp ¼ 1=(2ImfkSP) g) (5)

(open symbols in Figure 1d). Here, 2Im{k )

SP} is directly
extracted from the fwhm of the plasmon feature
along k ) for fixed frequency.47 The agreement be-
tween the results of eq 4 and eq 5 further corrobo-
rates the validity of the electrostatic scaling law, thus
providing a simple recipe to estimate the propagation
distance from the dispersion curves for any ribbon
size using eq 1 and eq 4. This is a useful general result
that can be applied to any graphene geometry,
including the ribbon pairs studied below, in which
one only needs to find the optical response for a given
size of the system, from which the response of a

Figure 2. Hybridized plasmons in aligned ribbon pairs: coplanar configuration. (a) Dispersion diagram for two ribbons of
widthW = 25 nm and Fermi energy EF = 0.5 eV embedded in silica and separated a distance d = 5 nm. The inset shows the d
dependence of the plasmon energy in the four lowest-energy modes (labeled A�D in the main plot) for fixed parallel wave
vector k ) = 0.1 nm�1. (b) Electric near-field (using the convention of Figure 1) of modes A�D in panel (a) at energies of 0.12,
0.15, 0.23, and 0.27 eV, respectively, and a common value of k ) = 0.05 nm�1.
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geometrically scaled structure follows using the
above expressions.

Coplanar Ribbon Pairs. The interaction between
guided plasmons in a pair of coplanar aligned ribbons
embedded in homogeneous silica is analyzed in Figure 2.
Each of the individual ribbon modes is observed to
split into two hybridized modes (Figure 2a). This split-
ting is obviously increasing with decreasing separation
d, as shown in the inset of Figure 2a for the four lowest-
energy modes labeled A�D in the main plot. The
lowest energy mode goes to zero energy at d = 0,
whereas the other three modes approach a finite
limiting energy. This behavior is further explained by
the near-field plots of Figure 2b, in which the two
lowest-energy modes (A and B) are seen to originate in
the hybridization of the fundamental monopolar
modes of the individual ribbons (i.e., similar to mode
A of Figure 1); in particular, the lowest-energymode (A)
is a binding state, in which the monopoles have
opposite charges, and in the limit of small separations
it migrates toward the red, eventually disappearing as
a frozenmode. However, the secondmode (B) involves
monopoles of equal charge, and in the limit of touch-
ing ribbons it smoothly converges to the monopole of
the ribbon of double width; this is a smooth transition
between the touching and nontouching regimes, un-
like what happens in sphere dimers.48 The third and
fourth modes (C and D) are binding and antibinding
hybridizations of the dipole modes of the individual
ribbons (i.e., similar to mode B of Figure 1), which
combine to form the dipole mode (C) and the quadru-
pole mode (D) of the ribbon of double width in the
touching limit. As a thumb rule, the interaction between

plasmons in coplanar ribbon pairs gives rise to hybri-
dized states, with small splitting at large separations,
and converging to the modes of the ribbon of double
width at zero separation; hybridization of modes of
order n = 0, 1, ... (monopoles, dipoles, etc.) smoothly
gives rise to double-width-ribbon modes of orders 2n
and 2n� 1 in the touching limit, except themonopoles
(n = 0), which only produce a double-width monopole
when touching, as the lowest-energy hybridizedmode
goes to zero frequency and disappears at vanishing
separation. This story is further supported by dispersion
diagrams for larger separations, and it also applies to
ribbons supported on a dielectric surface, with just
quantitative modifications due to the factor χ discussed
above (see SI).

Like in individual ribbons, the near-field plots of
Figure 2 show that ribbon edges concentrate electro-
magnetic energy. This is specially emphazied by the
hybridized dipole modes C and D in Figure 2b.

The validity of electrostatic scaling in ribbon pairs is
illustrated by Figure 3. The scaling parameter η =
χIm{σ(ωp)}/(ωpW) obtained from the dispersion curves
A�D of Figure 2a is shown in Figure 3b, and the
corresponding plasmon widths are represented in
Figure 3a. Notice that Figure 2 is calculated for ribbons
embedded in silica, and therefore, we have used χ = 1/εs
in the above formula in order to compensate for the
effect of the dielectric. As expected, the fwhm shows a
rather flat profile, roughly concentrated near the intrinsic
widthpτ�1≈ 1.32meV. Clearly,η should only dependon
the ratiod/W and theproduct k )W. Here, we only present
a limited range of calculations, which can then be
extrapolated to ribbons of differentwidthW. In particular,

Figure 3. Electrostatic scaling in coplanar ribbon pairs. (a,b) Plasmon fwhm (a) and scaling parameter η (b) as a function of
normalized parallel wave vector k ) for the same ribbon pairs and modes A�D as in Figure 2. (c,d) Plasmon fwhm and scaling
parameter as a function of ribbon separation d normalized to the ribbon widthW for three different combinations of Fermi
energy EF and W. Notice that k ) is varied in (c,d) in order to maintain k )W constant in all three calculations.
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Figure 3c,d shows the ribbon-distance dependence of
the scaling parameter calculated for various combina-
tions of Fermi energy and ribbon width, with k ) also
varied to keep k )W fixed. These combinations lead to
very close values of η for the four lowest-energy
plasmons under consideration (Figure 3d). In contrast,
the fwhm of these modes (Figure 3c) is peaked around
two different values, roughtly given by pτ�1≈ 1.32 meV
for EF = 0.5 eV and pτ�1 ≈ 0.88 meV for EF = 0.75 eV.
Finally, in the d/W. 1 limit we recover the two lowest-
energy modes of individual ribbons for k )W = 2.5 (see
Figure 1c).

Vertically Offset Ribbon Pairs. Plasmon hybridization in
vertically offset ribbons is quite different from coplanar
ribbons, as shown in Figure 4. At large separations,
weak mode hybridization and splitting occurs, prefer-
entially involving pairs of initially degenerate states
(one per ribbon). For example, two monopole modes
(like mode A in Figure 1) are combined to form two
hybridized states, giving rise to the two lowest-energy
bands of Figure 4b. The near fields of these modes
basically show binding and antibinding combinations
of monopoles, without nodes in the induced charge of
each ribbon (Figure 4d,modes C andD, respectively). In

Figure 4. Hybridized plasmons in aligned ribbon pairs: vertically offset configuration. (a,b) Dispersion diagram for two
ribbons of widthW = 25 nm and Fermi energy EF = 0.5 eV embedded in silica and separated by a distance d = 5 nm in panel (a)
and d=20 nm inpanel (b). (c) Plasmonenergy dependence of the five lowest-energymodes as a function of d for fixed parallel
wave vector k ) = 0.1 nm�1. (d) Electric near-field (using the convention of Figure 1) of modes labeled A�D in panels (a�c),
corresponding to k )=0.1nm

�1;d=5nm inAandB;d=20nm inCandD; andenergiesof 0.15 (A), 0.21 (B), 0.20 (C), and0.22 eV (D).
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contrast, the lowest-energy modes at smaller separa-
tions (A andB in Figure 4d) have very different origin, as
A is still an antisymmetric combination of monopoles,
whereas B is an antisymmetric combination of dipoles.
The transitionbetween these two regimesas thedistance
d is decreased is clearly observed in Figure 4c, in which
nonavoided crossings are taking place, and in particular
the second mode converges to the fundamental one for
large d because both of them are monopole�monopole
combinations,whereas it is replacedby thedipole�dipole
binding state below d ≈ 10 nm. This effect is also
observed in the dispersion diagram of Figure 4a as a
mode crossing between the second and thirdmodes at
lowvalues of k ). These are nonavoided crossings because
they involvenoninteractingmodes of different symmetry.

CONCLUSIONS

We have presented a comprehensive analysis of
guided plasmons in individual and paired graphene
ribbons, thus providing one of the central elements
needed to construct plasmon circuits in graphene at
infrared frequencies. Our critical findings are as follows:
(1) Individual ribbons are shown to exhibit a band
structure similar to narrow dielectric waveguides and
plasmonic nanowires,47 characterized by a fundamen-
tal acoustic mode (i.e., a band without a wavelength
cutoff) and a discrete set of higher-energy optical
modes (converging to nonpropagating plasmons that
couple to radiation33 for k ) < ω/c); (2) unlike thicker
plasmonic waveguides in noble metals,49,50 plasmons
propagating in graphene ribbons exhibit a large con-
centration of the electric field near the edges, particu-
larly in ribbon pairs placed at close proximity; (3) the
plasmon dispersion relation can be engineered by
changing the distance and relative configuration of
the ribbons in a pair; (4) we have formulated an
electrostatic scaling law (see eq 1) that facilitates the
understanding of these plasmons by allowing us to
obtain their wavelengths and propagation distances
from universal curves exclusively as a function of k )W

and the aspect ratio in the ribbon pairs (d/W). In brief,
ribbons provide a convenient way to guide plasmons,
with highly customizable dispersion bands. We have
also explored plasmon hopping between graphene
disks as an alternative guiding configuration, but the
strong trapping of plasmons in these structures averts
the possibility of having a reasonably intense interac-
tion between neighboring disks, and consequently
the resulting dispersion bands are rather flat (see SI).
Our results are based upon classical electromagnetic
theory, in which the graphene is described by a
frequency-dependent conductivity σ, but careful anal-
ysis of nonlocal effects (e.g., band gap opening51 and
edge electron scattering and binding25,52) must be
made before extrapolating these conclusions to small
widths below a few tens of nanometers.

The electrostatic tunability and relatively long pro-
pagation distances of graphene compared to conven-
tional plasmonic metals are excellent handles to
design devices in which the plasmon wavelength,
the propagation distance, and the dispersion charac-
teristics of the ribbon waveguides are modified at will
simply by applying an external potential.4 In this
respect, it should be noted that the propagation dis-
tance expressed in terms of the plasmonwavelength is
directly proportional to the relaxation time τ (see eq 5),
and therefore, τ is a critical parameter on which the
range of applications of graphene plasmonic wave-
guides is pending. Although impurities, phonons,18

and many-body effects53 can drastically reduce the
relaxation time, the estimated values based upon the
measured electron mobility20,54 are still well below
the level of losses in conventional plasmonic metals for
such degree of confinement (λp, lightwavelength). In
this respect, plasmon lasing assisted by a surrounding
gainmaterial can be useful to extend plasmon lifetimes
and propagation distances.55

Field enhancement at ribbon edges, particularly in
ribbon pairs, can be advantageous to sense low-energy
electronic and vibrational excitations of molecules
sitting in their vicinity. Additionally, graphene wave-
guides provide a suitable way to extract any molecule-
specific optical signal (e.g., SERS and SEIRA) through
guided modes, which can be subsequently processed
(e.g., they can be energy filtered by patterned gra-
phene waveguides and resonant cavities) and de-
tected (e.g., by direct electron�hole separation).
Incidentally, these guided plasmons can be created
by sending external light to a decorated part of the
ribbon (e.g., via a nanoparticle) in order to access
modes of large k ) outside the light cone.
In a different application, the vertically offset con-

figuration of Figure 4 can be used to couple the
mechanical modes of a suspended graphene ribbon
and the plasmons of the ribbon pair formed together
with a second ribbon situated underneath. Although
more technically challenging, the coplanar configura-
tion of Figure 2 can serve this purpose by patterning a
gap in the center of a wider suspended ribbon, so that
mechanical vibrations would involve lateral and verti-
cal displacements that periodically change the gap
distance. Small variations in the distance between
ribbons have been shown to produce large modifica-
tions in the plasmon dispersion relation, so that a
guided plasmon signal of fixed frequency can only
be on resonance at a specific separation, and therefore,
a plasmon of appropriate frequency can produce
attraction or repulsion between neighboring ribbons
and as a result it can either stimulate or cool mechan-
ical motion in these systems. This can be used in
combination with plasmon pulses created by coupling
to external light and acting during the larger between
the pulse duration and the lifetime of the plasmon
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(subpicoseconds). The latter is much shorter than the
period of typical mechanical oscillations (well above
the nanosecond), and therefore, plasmon pulses can
act as sharp, synchronized impulses to classically con-
trol the spring motion with either attractive or repul-
sive forces depending on the symmetry of the modes
(e.g., mode D of Figure 4 should produce a repulsive

force, because it involves charges of the same sign in
both ribbons, in contrast to modes A�C). Finally,
graphene ribbon waveguides, in combination with
resonant graphene cavities operating at the single-
plasmon level,33 are potential candidates for a future
quantum technology based on graphene plasmons
and working under ambient conditions.

MATERIALS AND METHODS
We study guided plasmons in individual ribbons and ribbon

pairs by examining the local density of optical states (LDOS),
which we resolve in wave vectors k ) along the direction of
ribbon translational invariance. The LDOS stands for the sum of
normalized electromagnetic-mode intensities at a given spatial
position56 as a function of light frequency, so that it exhibits
spectral peaks signaling the presence of localized modes, such
as plasmons. Specifically, we compute the LDOS near the edge
of the ribbons under consideration, where most modes make
substantial contributions. We rigorously solve the Maxwell
equations by means of the boundary element method
(BEM)57 to obtain the LDOS, as well as near fields of the modes
(these fields are extracted from the induced electric field upon
excitation by a nearby external dipole source). In this electro-
magnetic description, graphene is modeled as a thin layer of
thickness t = 0.5 nm with the edges rounded by semicircular
profiles and characterized by a dielectric function 1þ 4πiσ/(ωt),
where σ(ω) is the surface conductivity and ω is the light
frequency. This value of t is reasonably well converged with
respect to the t f 0 limit (see SI), thus relieving us from the
necessity of further discussing the effect of finite thickness of
the graphene layer in the optical response of the structures
under consideration (cf. the atomic-plane spacing in graphite,
∼0.33 nm). The Drude model provides an instructive approx-
imation to the conductivity and its dependence on Fermi
energy EF and relaxation time τ:

σ(ω) ¼ e2EF

πp2
i

ωþ iτ�1

We use a more realistic model for the conductivity taken from
the k ) f 0 limit of the random-phase approximation,58 which
describes interband interactions and incorporates the effect of
finite temperature (300 K). We estimate τ from the measured,
impurity-limited DC mobility20,54 μ ≈ 10000 cm2/(V s), which
yields τ = μEF/evF

2 ≈ 10�13 s for EF = 0.1 eV, where vF ≈
106 m/s is the graphene Fermi velocity. Actually, this is a
very conservative value compared to recent observations in
high-quality suspended graphene59 (μ > 100000) and gra-
phene on boron nitride60 (μ = 60000). However, we are
ignoring the effect of optical phonons,18 many-body
interactions,53 and deviation from a perfect Dirac-cone band
structure,61 which should all produce an increase in the width
of the modes.
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